Contextuality and noncommutative geometry in quantum mechanics

نویسنده

  • Nadish de Silva
چکیده

It is argued that the geometric dual of a noncommutative operator algebra represents a notion of quantum state space which differs from existing notions by representing observables as maps from states to outcomes rather than from states to distributions on outcomes. A program of solving for an explicitly geometric manifestation of quantum state space by adapting the spectral presheaf, a construction meant to analyze contextuality in quantum mechanics, to derive simple reconstructions of noncommutative topological tools from their topological prototypes is presented. We associate to each unital C-algebraA a geometric object—a diagram of topological spaces representing quotient spaces of the noncommutative space underlying A—meant to serve the role of a generalized Gel’fand spectrum. After showing that any functor F from compact Hausdorff spaces to a suitable target category C can be applied directly to these geometric objects to automatically yield an extension F̃ which acts on all unital C-algebras, we compare a novel formulation of the operator K0 functor to the extension K̃ of the topological K-functor. We then conjecture that the extension of the functor assigning a topological space its topological lattice assigns a unital C-algebra the topological lattice of its primary ideal spectrum and prove the von Neumann algebraic analogue of this conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of additive functional equation on discrete quantum semigroups

We construct  a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...

متن کامل

Noncommutative geometry and number theory

Noncommutative geometry is a modern field of mathematics begun by Alain Connes in the early 1980s. It provides powerful tools to treat spaces that are essentially of a quantum nature. Unlike the case of ordinary spaces, their algebraof coordinates is noncommutative, reflecting phenomena like the Heisenberg uncertainty principle in quantum mechanics. What is especially interesting is the fact th...

متن کامل

Notes on Noncommutative Geometry

Noncommutative geometry has roots in and is a synthesis of a number of diverse areas of mathematics, including: • Hilbert space and single operator theory; • Operator algebras (C*-algebras and von Neumann algebras); • Spin geometry – Dirac operators – index theory; • Algebraic topology – homological algebra. It has certainly also been inspired by quantum mechanics, and, besides feedback to the ...

متن کامل

Spectral noncommutative geometry and quantization: a simple example

The idea that the geometric structure of physical spacetime could be noncommutative exists in different versions. In some of versions, the noncommutativity of geometry is viewed as a direct effect of quantum mechanics, which disappears in the limit in which we consider processes involving actions much larger than the Planck constant [1]. In the noncommutative geometry approach of Connes et. al....

متن کامل

Komaba Lectures on Noncommutative Solitons and D-Branes

These lectures provide an introduction to noncommutative geometry and its origins in quantum mechanics and to the construction of solitons in noncommutative field theory. These ideas are applied to the construction of D-branes as solitons of the tachyon field in noncommutative open string theory. A brief discussion is given of the K-theory classification of D-brane charge in terms of the K-theo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015